Search results for "Fiber sensors"

showing 8 items of 8 documents

High Sensitivity Refractive Index Sensor Based on Highly Overcoupled Tapered Fiber Optic Couplers

2017

In this paper, a simple and compact fiber-optic sensor based on an overcoupled tapered fiber coupler is studied. The coupler is fabricated to be operated well beyond the initial coupling cycles, where the rapid exchange of energy between outputs ports enable the fabrication of a highly sensitive device. The suitability and sensitivity of the proposed scheme is demonstrated by measuring refractive index (RI) variations of sugar concentrations in water. The device presents a linear response in terms of power transmission or wavelength shift versus RI changes. The best achieved sensitivity is 0.442 units of normalized transmission per unit of sugar concentration, with a noise detection limit o…

FabricationMaterials scienceOptical fiberOptical fiber couplers02 engineering and technologylaw.invention020210 optoelectronics & photonicsOpticslaw0202 electrical engineering electronic engineering information engineeringFiberSensitivity (control systems)Electrical and Electronic EngineeringInstrumentationCouplersCouplingbusiness.industryOptical fiber sensorsUNESCO::FÍSICA::Óptica ::Fibras ópticasTransmission (telecommunications):FÍSICA::Óptica ::Fibras ópticas [UNESCO]CouplingsbusinessRefractive indexEnergy (signal processing)
researchProduct

Development and analysis of a model based on chirped fiber Bragg gratings employed for cracks characterization in materials

2018

In this work a model was developed that allows to understand the behavior of a chirped fiber Bragg grating for the detection and characterization of cracks in materials. In addition to the amplitude response, we show that the group delay of the grating provides useful information for the characterization of the crack. The position of the crack can be determined thanks to the linear chirp of the grating that fixes a correlation between the spatial position and both, the wavelength and the group delay. However, our analysis shows that this simple approach has a source of error, which can be overcome if a controllable external strain can be applied to the embedded grating, additional to the st…

Materials scienceCiencias FísicasPhysics::Optics02 engineering and technologyGratingFabry-Perot cavityIDENTIFICATION OF MATERIAL CRACKS01 natural sciencesFABRY–PEROT CAVITY010309 opticsFabry–Perot cavityOpticsFiber Bragg gratingPosition (vector)0103 physical sciencesMODELING OF SENSORSChirpFiberElectrical and Electronic EngineeringPhysical and Theoretical ChemistryGroup delay and phase delayModelling of sensorsÓpticaChirped fibre Bragg gratingsbusiness.industryChirped fiber Bragg gratingsIdentification of material cracksOptical fiber sensorsCHIRPED FIBER BRAGG GRATINGSFísicaOptical fibre sensors021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsUNESCO::FÍSICA::Óptica ::Fibras ópticasElectronic Optical and Magnetic MaterialsWavelengthTransmission (telecommunications):FÍSICA::Óptica ::Fibras ópticas [UNESCO]Modeling of sensorsOPTICAL FIBER SENSORS0210 nano-technologybusinessCIENCIAS NATURALES Y EXACTAS
researchProduct

Optical frequency domain reflectometer distributed sensing using microstructured pure silica optical fibers under radiations

2016

International audience; We investigated the capability of micro-structured optical fibers to develop multi-functional, remotely-controlled, Optical Frequency Domain Reflectometry (OFDR) distributed fiber based sensors to monitor temperature in nuclear power plants or high energy physics facilities. As pure-silica-core fibers are amongst the most radiation resistant waveguides, we characterized the response of two fibers with the same microstructure, one possessing a core elaborated with F300 Heraeus rod representing the state-of-the art for such fiber technology and one innovative sample based on pure sol-gel silica. Our measurements reveal that the Xray radiations do not affect the capaci…

Nuclear and High Energy PhysicsMaterials scienceOptical fiberOptical time-domain reflectometerRayleigh scattering01 natural scienceslaw.invention010309 opticsOpticsZero-dispersion wavelengthlaw0103 physical sciencesRayleighElectrical and Electronic EngineeringNuclear and High Energy Physic[PHYS]Physics [physics]RadiationOptical fiber sensor010308 nuclear & particles physicsbusiness.industryOptical fiber sensorsOptique / photoniqueMicrostructured optical fiberDistributed acoustic sensingradiationNuclear Energy and EngineeringFiber optic sensor[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicOptoelectronicsbusinessHard-clad silica optical fiberPhotonic-crystal fiber
researchProduct

Radiation Characterization of Optical Frequency Domain Reflectometry Fiber-Based Distributed Sensors

2016

International audience; We studied the responses of fiber-basedtemperature and strain sensors related to Optical FrequencyDomain Reflectometry (OFDR) and exposed to high γ-ray dosesup to 10 MGy. Three different commercial fiber classes areused to investigate the evolution of OFDR parameters withdose, thermal treatment and fiber core/cladding composition.We find that the fiber coating is affected by both thermal andradiation treatments and this modification results in anevolution of the internal stress distribution inside the fiber that influences its temperature and strain Rayleigh coefficients. These two environmental parameters introduce a relative error up to 5% on temperature and strain…

Nuclear and High Energy PhysicsMaterials scienceRadiation effects02 engineering and technologyThermal treatmentRadiation01 natural sciencesTemperature measurementsymbols.namesake020210 optoelectronics & photonics0103 physical sciencesThermal0202 electrical engineering electronic engineering information engineeringElectroniqueRayleigh scatteringElectrical and Electronic EngineeringReflectometryNuclear and High Energy PhysicTemperature measurement010308 nuclear & particles physicsbusiness.industryOptical fiber sensorsCladding (fiber optics)[SPI.TRON]Engineering Sciences [physics]/ElectronicsNuclear Energy and EngineeringFiber optic sensorsymbolsOptoelectronicsStrain measurementbusiness
researchProduct

Evaluation of Distributed OFDR-Based Sensing Performance in Mixed Neutron/Gamma Radiation Environments

2017

We report the study of a radiation resistant single mode optical fiber doped with fluorine exposed to mixed neutron and $\gamma $ -radiation up to $10^{17}$ n/cm2 fluence and >2 MGy dose to evaluate its performances when used as the sensing element of a distributed Optical Frequency Domain Reflectometry (OFDR). The use of complementary spectroscopic techniques highlights some differences between the responses of solely $\gamma $ -radiation (10 MGy) or mixed neutron and $\gamma $ ( $10^{17}$ n/cm $^{2}+>2$ MGy) irradiated samples. Those differences are linked to the defect generation rather than to structural changes of the ${a}$ -SiO2 host matrix. We show that a modification of the refracti…

Nuclear and High Energy PhysicsOptical fiberMaterials scienceAstrophysics::High Energy Astrophysical Phenomena02 engineering and technologyRadiationRayleigh scattering01 natural sciencesFluencelaw.inventionsymbols.namesake020210 optoelectronics & photonicsOpticsNeutron fluxlaw0103 physical sciences0202 electrical engineering electronic engineering information engineeringNeutronIrradiationElectrical and Electronic EngineeringRayleigh scatteringOptical Frequency Domain Reflectometry Nuclear and High Energy PhysicsNeutronsRadiation010308 nuclear & particles physicsbusiness.industryOptical fiber sensorsSingle-mode optical fiberOptique / photoniqueneutrons gamma radiationNuclear Energy and Engineeringsymbols[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicAtomic physicsbusinessoptical fiber distributed sensor
researchProduct

Radiation Hardened Optical Frequency Domain Reflectometry Distributed Temperature Fiber-Based Sensors

2015

International audience; We study the performance of Optical Frequency Domain Reflectometry (OFDR) distributed temperature sensors using radiation resistant single-mode optical fibers. In situ experiments under 10 keV X-rays exposure up to 1 MGy( SiO 2 ) were carried out with an original setup that allows to investigate combined temperature and radiation effects on the sensors within a temperature range from 30 ° C to 250 ° C. Obtained results demonstrate that optical fiber sensors based on Rayleigh technique are almost unaffected by radiation up to the explored doses. We show that a pre-thermal treatment stabilize the sensor performance increasing the accuracy on temperature measurement fro…

Nuclear and High Energy Physicsoptical fiberOptical fiberMaterials scienceRadiation effectsRadiationRayleigh scatteringTemperature measurementlaw.inventionDistributed sensingsymbols.namesakeOpticslawOptical fibers[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]ElectroniqueRayleigh scatteringElectrical and Electronic EngineeringReflectometryNuclear and High Energy PhysicFiber sensorsradiation effectbusiness.industryfiber sensorAtmospheric temperature rangeDistributed acoustic sensingNuclear Energy and EngineeringFiber optic sensor[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicsymbolsOptoelectronicsbusiness
researchProduct

Radiation Response of OFDR Distributed Sensors Based on Microstructured Pure Silica Optical Fibers

2015

International audience; Temperature sensors based on microstructured pure silica optical fibers are investigated by OFDR and RIA performed during X-ray irradiation up to 50kGy dose. The results evidence that the temperature measures are poorly influenced by irradiation (the error being less than 0.3°C). Such a radiation tolerance is relevant for the use of these Rayleigh based sensors in harsh environments.

Optical fiberMaterials scienceRadiationOptical fiber sensorbusiness.industryOptical fiber sensorsRadiationRayleigh scatteringTemperature measurementlaw.invention[SPI.TRON]Engineering Sciences [physics]/Electronics[SPI]Engineering Sciences [physics]symbols.namesakeOpticsRadiation tolerancelawsymbolsOptoelectronicsIrradiationElectroniqueElectrical and Electronic EngineeringRayleigh scatteringbusinessRadiation response
researchProduct

High-speed and high-resolution interrogation of FBG sensors using wavelength-to-time mapping and Gaussian filters

2019

In this work we report a novel intensity-based technique for simultaneous high-speed and high-resolution interrogation of fiber Bragg grating (FBG) sensors. The method uses a couple of intensity Gaussian filters and the dispersion-induced wavelength-to-time mapping effect. The Bragg wavelength is retrieved by means of the amplitude comparison between the two filtered grating spectrums, which are mapped into a time-domain waveform. In this way, measurement distortions arising from residual power due to the grating sidelobes are completely avoided, and the wavelength measurement range is considerably extended with respect to the previously proposed schemes. We present the mathematical backgro…

Optical fiberoptical fibersPhysics - Instrumentation and DetectorsGaussianPhysics::OpticsFOS: Physical sciences//purl.org/becyt/ford/2.2 [https]Gratinglaw.inventionsymbols.namesakeOpticsFiber Bragg gratinglawWaveformphotonic sensorssensor monitoringfiber opticsPhysicsUNESCO::FÍSICA::ÓpticaSignal processingfiber sensorsbusiness.industryfiber bragg fratingInstrumentation and Detectors (physics.ins-det)Atomic and Molecular Physics and OpticsWavelengthLight intensity//purl.org/becyt/ford/2 [https]:FÍSICA::Óptica [UNESCO]symbolsbusinessfiber Bragg gratingsPhysics - OpticsOptics (physics.optics)
researchProduct